Math 55 Quiz 6 DIS 106

Name: \qquad 14 Mar 2022

1. A Californian license plate is made using one digit followed by three upper case English letters followed by another three digits, for example: 5FVP402 is a valid license plate.
(a) How many license plates whose letters are distinct and appear in alphabetical order can be made? [3 points]
(b) How many license plates whose digits multiply up to 15 can be made? [3 points]
(c) How many license plates that contain the digits $3,1,4$ in that order can be made? [4 points]
(a) This is equivalent to choosing 3 distinct letters out of the 26 possible letters (and then choosing 4 digits). Hence there are $\binom{26}{3} \cdot 10^{4}=26000000$ possible license plates.
(b) The digits must be $1,1,3,5$. So there are $4 \cdot 3=12$ ways to arrange these digits (or $\frac{4!!}{2!1!!!}=12$). Together with the letters, there are $12 \cdot 26^{3}=210912$ possible license plates.
(c) Suppose the digits are 3, 1, 4, n.

If $n=1,3,4$, there are 3 ways of arranging the digits, e.g. when $n=1$, we have 1,3 , 1,$4 ; 3,1,1,4 ; 3,1,4,1$.
If $n \neq 1,3,4$, there are 4 ways of arranging the digits, e.g. when $n=0$, we have 0,3 , 1,$4 ; 3,0,1,4 ; 3,1,0,4 ; 3,1,4,0$.
So there are $3 \cdot 3+7 \cdot 4=37$ combinations for the digits. Together with the letters, there are $37 \cdot 26^{3}=650312$ possible license plates.

